Notebook Export
Four Fish
Paul Greenberg

Epigraph
Highlight(yellow) - Location 47
Fish is the only grub left that the scientists haven’t been able to get their hands on and improve. The flounder you eat today hasn’t got any more damned vitamins in it than the flounder your great-great-granddaddy ate, and it tastes the same. Everything else has been improved and improved and improved to such an extent that it ain’t fit to eat.  —a Fulton Fish Market denizen, in Old Mr. Flood by Joseph Mitchell, 1944
Introduction
Highlight(pink) - Location 173
The more I thought of it, the more I realized that the four fish that are coming to dominate the modern seafood market are visible footprints, marking four discrete steps humanity has taken in its attempts to master the sea. Each fish is an archive of a particular, epochal shift. Salmon, a beautiful silvery animal with succulent pink flesh, is dependent upon clean, free-flowing freshwater rivers. It is representative of the first wave of human exploitation, the species that marks the point at which humans and fish first had large-scale environmental problems and where domestication had to be launched to head off extinction. Sea bass, a name applied to many fish but which increasingly refers to a single white, meaty-fleshed animal called the European sea bass, represents the near-shore shallow waters of our coasts, the place where Europeans first learned how to fish in the sea and where we also found ourselves outstripping the resources of nature and turning to an even more sophisticated form of domestication to maintain fish supplies. Cod, a white, flaky-fleshed animal that once congregated in astronomical numbers around the slopes of the continental shelves many miles offshore, heralded the era of industrial fishing, an era where mammoth factory ships were created to match cod’s seemingly irrepressible abundance and turn its easily processed flesh into a cheap commoner’s staple. And finally tuna, a family of lightning-fast, sometimes thousand-pound animals with red, steaklike flesh that frequent the distant deepwater zones beyond the continental slope. Some tuna cross the breadth of the oceans, and nearly all tuna species range across waters that belong to multiple nations or no nation at all. Tuna are thus stateless fish, difficult to regulate and subject to the last great gold rush of wild food—a sushi binge that is now pushing us into a realm of science-fiction-level fish-farming research and challenging us to reevaluate whether fish are at their root expendable seafood or wildlife desperately in need of our compassion.
Highlight(yellow) - Location 189
This is not the first time humanity has glanced across the disorderly range of untamed nature and selected a handful of species to exploit and propagate. Out of all of the many mammals that roamed the earth before the last ice age, our forebears selected four—cows, pigs, sheep, and goats—to be their principal meats. Out of all the many birds that darkened the primeval skies, humans chose four—chickens, turkeys, ducks, and geese—to be their poultry.
Salmon - The Selection of a King
Highlight(yellow) - Location 371
Before the Industrial Revolution, the world’s population of wild salmon was likely to have been four or five times greater than it is today. Even in areas where there was no direct outlet to the sea, “landlocked” varieties of salmon evolved and used large lakes, like Lake Ontario, as their own private oceans. It is not for metaphorical reasons that the principal river draining into Lake Ontario from New York State is called the Salmon River. Nearly every river in Northern Europe, including the Thames and the Rhine, also teemed with them. The oft-told story of prisoners rioting on account of being served too many lobster suppers in colonial New England applies to salmon dinners and Scottish prisoners as well.
Highlight(yellow) - Location 584
Since wild cattle were domesticated many millennia ago, without any coherent genetically based selection methodology, many useful genes may have been lost and never made it into the animals we eat today. But at the time Norwegian salmon breeding began, wild salmon were still viable and diverse. The genetic potential was enormous. The initial selection of farmed Atlantic salmon took place from fish drawn from forty different river systems. Every salmon river has its own unique set of challenges to which fish must adapt.
Highlight(yellow) - Location 591
And because salmon, unlike cattle and sheep, can produce many thousands of offspring in the course of their lives, once favorable individuals were found, just a few matriarchs and patriarchs could form the basis of a whole new race of highly productive fish. A domestic population could be created quickly that would be quite different from the initial wild forebears.
Highlight(yellow) - Location 598
And what is so impressive is that each generation, each step up, we made progress of thirteen-to fourteen-percent improvement in growth rate.” In other words, within just seven generations—fourteen years—the Norwegians were able to double the growth rate of salmon—something that had taken thirty generations and sixty years of applied breeding, not to mention an unknowable amount of Neolithic-era undocumented selection, with cattle and sheep.
Highlight(pink) - Location 690
Fish farming in its first incarnations is almost always a privatization of a public resource—a mad-dash grab for ocean farming sites that previously belonged to no one.
Note - Location 691
Highlight(pink) - Location 930
AquaBounty was eventually able to create a salmon that grew twice as fast as the already double-growth speed of selectively bred salmon. The new fish, trademarked as AquAdvantage Salmon, was recently submitted to the U.S. Food and Drug Administration for approval.
Note - Location 932
Currently sold in Canada, FDA approved in 2015, import ban lifted in 2019, Indiana facility to have product by EO2020
Highlight(pink) - Location 961
Indeed, salmon is now a key-stone industry at the very core of the international food industry. As one salmon farmer told me, “Most supermarkets wouldn’t even have a seafood section if it wasn’t for salmon.”
Sea Bass - The Holiday Fish Goes to Work
Highlight(yellow) - Location 1108
Consumers’ default assumption still seems to be that a fish on the plate is most likely going to be wild. This in spite of the fact that aquaculture is the fastest-growing food-production system in the word and will likely surpass wild production within a year or two (if it hasn’t done so already).
Highlight(yellow) - Location 1142
What do fishmongers and restaurateurs mean when they encourage us to choose something called bass? And why do so many fish seem to be lumped under that single name? The answer brings us back to the persistence of the primitive relationship between fish and fishermen and to the superstitious, highly unscientific way humans distinguish “good” edible fish from bad ones.
Highlight(yellow) - Location 1154
In the modern era, everything commonly called bass, be it a European sea bass, an American striped bass, or a Chilean sea bass, is classified as belonging to a single scientific order, the order Perciformes, whose root, perc, drives the researcher back to the Greek perkē. When that is combined with the Latin formes, we end up with a classification that means, broadly, “perch-shaped.” Many fish turn out to be “perchshaped”—Perciformes is the largest order of vertebrates on earth, containing over seven thousand species and most of the so-called game fish of the world. It is so large a classification that taxonomists often call it a “garbage-bag holder,” used to contain a ridiculously large number of vaguely similar species that people haven’t quite gotten around to properly classifying.
Highlight(yellow) - Location 1163
Whereas more primitive fish must constantly swim to keep from sinking to the bottom, the forebears of the perciforms perfected an organ called the swim bladder, which they inflate with gas to keep them neutrally buoyant in the water column, much as a scuba diver inflates a buoyancy compensator to achieve a state of weightlessness. When a perciform dives deeper, it emits more gas into its bladder, which compensates for the added pressure of the water above. When it rises, it absorbs gas back into its tissues, once again finding a weightless equilibrium. And, like a scuba diver who has properly adjusted his buoyancy compensator, a fish that has achieved neutral buoyancy expends less energy. The perciforms’ victory over gravity has in turn led to other morphological adaptations that make them both successful animals and good to eat. Without a need to fight gravity all the time, perciforms became more efficient swimmers and were able to trade in their heavy, energy-demanding “red muscle” tissue for lighter, more delicate flesh. Hence the white, light meat of many perciforms. Perciforms also evolved an efficient muscle structure that is principally attached only to the central spinal column. The result: a smooth, mostly boneless fillet, very pleasant to eat.
Highlight(yellow) - Location 1305
But why did the Israelis start with sea bass? The answer appears to be its potential not only as a food source but also as a commodity. A French fisheries policy analyst told me recently, “Traditionally, sea bass was rare. It was a big fish that you had for a special party with friends and family.”
Highlight(yellow) - Location 1315
But in order to make this holiday fish into an everyday fish, several difficult constraints had to be mastered. Since no one had figured out how to make sea bass spawn in captivity, Zohar and his colleagues had to collect fish from nature for their research. This is where Israel’s acquisition of Lake Bardawil became of critical importance. Early on, Jewish researchers passing through the newly captured Arab land realized that Lake Bardawil was a gold mine for research.
Highlight(pink) - Location 1329
There is a natural human tendency to want to create linear narratives out of the disorder of day-to-day life. But science is far from linear. The understanding of perciform reproductive systems took a decade of false starts.
Highlight(yellow) - Location 1346
Eventually Zohar’s lab engineered a microscopic polymer-based sphere that would slowly release the hormone into the sea bass’s bloodstream, causing the fish to expel all its eggs and sperm in a single, predictable period. By the 1980s, sea bass fertility had finally been decoded.
Highlight(pink) - Location 1392
In 1977, in response to many nations’ complaints that their fish were being “stolen,” the United Nations passed a revised Law of the Sea Treaty that allowed countries to expand their sovereignty from three miles up to two hundred miles out to sea—the zone that most fish called “bass” were likely to inhabit.
Highlight(yellow) - Location 1585
Today Greece sends nearly a hundred million of those exactly plate-size fish to diners throughout Europe, the United States, and beyond every single year. Sea bass booms and busts now wash over the shores of the Mediterranean, rising and falling as profit margins get thinner and operations move to areas with weaker regulation and cheaper labor costs. From Turkey to Tunisia to Egypt they spread, and each time, as with the salmon industry in Canada and Norway, the same bad practices cause pollution, disease, and death. On each such occasion, emergency regulations are put in place to save the industry and the coast. Once upon a time, when sea bass were still rare, there was a profit margin of ten dollars per pound. Now that global production of sea bass approaches 200 million fish a year, the profit margin is down to half a cent per kilo.
Highlight(yellow) - Location 1620
By the standard metrics of domestication, the sea bass was not the best choice to be the first ocean perciform in our mangers. It is difficult to breed, it is hard to nurture past its larval stages, and it requires more wild fish as feed than it ultimately yields at harvest. If we were truly desperate to come up with a better source of food to “feed the world,” we would have chosen something else.
Highlight(pink) - Location 1626
When the idea of farming sea bass was first hatched, no one could have foreseen that they would be so successful as to cause a massive collapse in price and return on investment. We must also keep in mind that the European sea bass was the Rosetta stone of fish—the animal that unlocked the secrets of development for every major commercial species of ocean fish in the world.
Highlight(yellow) - Location 1660
Goldman tested over fifty different species, looking further and further afield, each time finding some fatal flaw in the fish he investigated. But finally, at the dawn of the new millennium, he met an energetic Australian entrepreneur named Stewart Graham, who introduced him to a Southeast Asian fish that met all of Goldman’s criteria. Colonial-era Britons had named the fish the Asian sea bass, but it was even more distant from the European sea bass genetically than any of the other American basses. The fish was known locally in Australia by its Aboriginal name, barramundi.
Cod - The Return of the Commoner
Highlight(pink) - Location 1713
The book was by a onetime commercial fisherman-turned-journalist named Mark Kurlansky and was called simply Cod. It is considered to be the first of what the publishing industry would come to call “the microhistory,” in which human social evolution is traced through a single commodity.
Highlight(yellow) - Location 1844
The popularity of gadiforms is greatly aided by their morphology generally. Gadiforms live a lazy life, preferring to move slowly in chilly water. Their flesh therefore often contains a minimum of high-speed muscle tissue—tissue that is usually contained within the blood line that runs down the length of the fish’s fillet. Because the size of a fish’s bloodline contributes to its “fishy” flavor, cod do not taste very fishy. Cod also have a tendency to store oil in their liver rather than in their flesh. Since oil in the flesh determines the speed at which flesh putrifies when frozen or dried, cod and other gadiforms can be stored for great lengths of time. Gadiforms are therefore the perfect industrial fish: they are common, mild, and easily recast as different kinds of food products.
Highlight(yellow) - Location 1960
But what made the Sustainable Fisheries Act most significant is that for the first time since the era of industrial fishing began, it essentially required that overfishing be ended for every single American fish or shellfish. To this day neither the European Common Fisheries Policy nor the Canadian National Fisheries Policy has ever done such a thing.
Highlight(yellow) - Location 1984
The idea of shifting baselines is this: Every generation has its own, specific expectations of what “normal” is for nature, a baseline. One generation has one baseline for abundance while the next has a reduced version and the next reduced even more, and so on and so on until expectations of abundance are pathetically low. Before Daniel Pauly expressed this generational memory loss as a scientific thesis, the fantastical catches of older fishermen could be written off as time-warped nostalgia. But Pauly has tabulated the historical catch data and shown that the good old days were in fact often much better. This is not nostalgia on the part of the old or lack of empathy on the part of the young. It is almost a willful forgetting—the means by which our species, generation by generation, finds reasonableness amid the irrational destruction of the greatest natural food system on earth.
Highlight(yellow) - Location 2284
But Unilever managed to pull off one of the greatest reversals in the history of the modern-day green movement. Applying market principles to the nonprofit world, it sought out a partnership with another global environmental charity, the World Wildlife Fund, and jointly fashioned a new nonprofit called the Marine Stewardship Council (MSC), devoted specifically to the task of identifying sustainable stocks of fish around the world and setting standards for fishing those stocks.
Highlight(yellow) - Location 2323
Across the world, in another hemisphere altogether, the fishery of another abundant community of gadiforms certified by MSC is drawing criticism from environmental organizations, particularly Greenpeace. Alaska pollock are today the largest source of wild whitefish in the world. Nearly 2 billion pounds of the fish came to market in 2009. If you have eaten a fish stick, a Filet-O-Fish sandwich, a California roll, or any other processed white fish, you have eaten Alaska pollock. And, increasingly in Europe, Alaska pollock are being sold as flash-frozen whole fillets, a niche that had once historically been nearly the exclusive domain of cod. The fishery was first certified by MSC in 2005.
Highlight(yellow) - Location 2381
The fish that were in Mr. Khon’s pond are known internationally by their genus name Pangasius and locally as tra. If records from Vietnamese growers and government officials are to be believed, tra may be the most productive food fish on earth. Whereas an acre of codfish net pens will produce about ten thousand pounds of cod in a good year, that same acre in Vietnam will churn out half a million pounds of tra. This incredible tendency toward abundance has made the fish into the fourth most common aquaculture product in the world. From 50 million pounds in 1997, annual production has grown to well over 2.2 billion pounds, a large portion of which goes to Europe. Production is still growing, and no one can quite say where the upper limit will be.
Highlight(yellow) - Location 2432
Tilapia, like tra, saw a gradual buildup in abundance in the second half of the twentieth century, but, as with tra, its initial expansion occurred primarily in the developing world. Most tilapia hail from the Nile but were first spread beyond Africa when the Japanese army blockaded Indonesia during World War II. At the time, Indonesian fish farmers relied on a fish called milkfish for their aquaculture farms, but with the blockade they couldn’t access the milkfish broodstock, which became stranded behind enemy lines. American forces were able to get a few stray tilapia to the Indonesians, and they soon found that tilapia grew nearly twice as fast as milkfish. After the war, when the Peace Corps was born and the United States Agency for International Development implemented hunger-relief programs in postcolonial countries around the world, tilapia were seen as a solution to the world protein deficit. Not only did they reproduce with great abandon and without any help from humans, they technically required no food whatsoever. Tilapia, like tra in their native state, are filter feeders, able to live solely off elements of human waste, algae, and other microscopic plankton. So with tilapia, poor farmers, whose only resource besides land might be a stagnant patch of muddy water, suddenly had the chance to add protein to their diet with very little effort.
Tuna - One Last Bite
Highlight(yellow) - Location 2679
clocking them during their fastest accelerations at speeds in excess of forty miles per hour, faster than the Iowa-class battleships, the fastest warships ever built.
Highlight(yellow) - Location 2687
And how else would a fish appear within a phylum of otherwise cold-blooded animals that can redirect the heat that its muscles throw off back into its very flesh and raise its body temperature by as much as twenty degrees above ambient conditions? Yes, the biggest tuna are warm-blooded.
Highlight(yellow) - Location 2769
It is the battle with ourselves. A battle between the altruism toward other species that we know we can muster and the primitive greed that lies beneath our relationship with the creatures of the sea. And yet it is a battle that has been fought and won before, against high odds. Looking back over the history of the ocean, we can see that there is one order of sea creatures bigger than tuna that has earned our empathy and, more important, our protective resolve, rising up from the background of marine life to become a superstar of conservation, on a par with the tiger and the elephant. It is to this example we must look if we are to fix our tuna problem once and for all.
Highlight(yellow) - Location 2926
Like whales, whose migrations carry them sometimes from pole to pole, tuna are far-ranging and committed to no single nation. Their transience is intractable and indeed imperative to the continuation of their life cycles. They are in all respects an unmanageable fish. International regulators have as much as admitted their inability to manage the species. In a recent report on the status of the North Atlantic bluefin tuna stock, ICCAT officials wrote from Madrid, “Based on the Committee’s analysis, it is apparent that the catch limits set by ICCAT are not respected and are largely ineffective in controlling overall catch.” It concluded, rather bizarrely, that “the current management scheme will most probably lead to further reduction in spawning stock biomass with high risk of fisheries and stock collapse.”
Highlight(yellow) - Location 3079
However, whether bluefin tuna will artificially reproduce via bonito or via a precisely controlled artificial environment with Zoharian hormone spheres trickling through their bloodstreams, the fact remains that bluefin are warm-blooded, fast-swimming, highly complicated animals that in the best-case scenario will still require a tremendous amount of food to bring them to market. Whereas twenty generations of selective salmon breeding in Norway have brought the feed-conversion ratio in Atlantic salmon down below three pounds of feed to one pound of salmon, tuna still require as much as twenty pounds of feed for every pound of flesh they produce.
Highlight(yellow) - Location 3175
the rich ruby color of tuna (a color that is often enhanced artificially by “gassing” tuna with carbon monoxide),
Conclusion
Highlight(pink) - Location 3319
The protection of the bottom of the food chain. With the boom of aquaculture and the rise in the use of fish as feed for pigs and chickens, small forage fish like anchovies, sardines, capelin, and herring now represent the largest portion of fish caught. All of these fish are in greater and greater numbers being ground up in reduction facilities and recast as food for fish farms and terrestrial farming operations. And yet we really do not understand the population dynamics of these smaller forage fish, and we do not really know how to manage them. With the scaling-up of so much aquaculture, we run the very real risk of what Dr. Ellen Pikitch of the Pew Oceans Commission called “pulling the rug out from underneath marine ecosystems”—that is, removing the basic food source of the ocean and causing fisheries collapses from below.
Highlight(pink) - Location 3373
I would propose that the next animals from the sea we domesticate should be: 1. Efficient. In an increasingly stretched world of food resources, we cannot afford fish that require more feed to produce a pound of edible flesh than do our most efficient terrestrial animals. Fish, by their very nature, should be more efficient than land animals. Fish do not have to warm their bodies, and they do not have to stand against gravity. All that energy that is wasted in mammals and birds could and should be redirected into growing fish flesh.
Highlight(pink) - Location 3402
Why farm cod when tilapia is already doing the job? Subtle differences in flesh texture, taste, and nutritional content are controllable through feed and rearing techniques and do not require the taming of a new species. If we want variety of species for niche markets, let that variety be provided by small-scale, sustainable wild fisheries.